LangChain
LangChain是一个用于开发由语言模型支持的应用程序的框架。
什么是LangChain?
使用ChatGPT大家可能都是知道prompt:
- 想像一下,如果我需要快速读一本书,想通过本书作为prompt,使用ChatGPT根据书本中来回答问题,我们需要怎么做?
- 假设你需要一个问答任务用到prompt A,摘要任务要使用到prompt B,那如何管理这些prompt呢?因此需要用LangChain来管理这些prompt。
LangChain的出现,简化了我们在使用ChatGPT的工程复杂度。
LangChain中的模块,每个模块如何使用?
前提:运行一下代码,需要OPENAI_API_KEY(OpenAI申请的key,配置到ENV中),同时统一引入这些库:
# 导入LLM包装器
from langchain import OpenAI, ConversationChain
from langchain.agents import initialize_agent
from langchain.agents import load_tools
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
LLM:从语言模型中输出预测结果,和直接使用OpenAI的接口一样,输入什么就返回什么。
llm = OpenAI(model_name="text-davinci-003", temperature=0.9) // 这些都是OpenAI的参数
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
// 以上就是打印调用OpenAI接口的返回值,相当于接口的封装,实现的代码可以看看github.com/hwchase17/langchain/llms/openai.py的OpenAIChat
以上代码运行结果:
Cozy Colours Socks.
Prompt Templates:管理LLMs的Prompts,就像我们需要管理变量或者模板一样。
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
// 以上是两个参数,一个输入变量,一个模板字符串,实现的代码可以看看github.com/hwchase17/langchain/prompts
// PromptTemplate实际是基于StringPromptTemplate,可以支持字符串类型的模板,也可以支持文件类型的模板
以上代码运行结果:
What is a good name for a company that makes colorful socks?
Chains:将LLMs和prompts结合起来,前面提到提供了OpenAI的封装和你需要问的字符串模板,就可以执行获得返回了。
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt) // 通过LLM的llm变量,Prompt Templates的prompt生成LLMChain
chain.run("colorful socks") // 实际这里就变成了实际问题:What is a good name for a company that makes colorful socks?
Agents:基于用户输入动态地调用chains,LangChani可以将问题拆分为几个步骤,然后每个步骤可以根据提供个Agents做相关的事情。
# 导入一些tools,比如llm-math
# llm-math是langchain里面的能做数学计算的模块
tools = load_tools(["llm-math"], llm=llm)
# 初始化tools,models 和使用的agent
agent = initialize_agent(
tools, llm, agent="zero-shot-react-description", verbose=True)
text = "12 raised to the 3 power and result raised to 2 power?"
print("input text: ", text)
agent.run(text)
通过如上的代码,运行结果(拆分为两个部分):
> Entering new AgentExecutor chain...
I need to use the calculator for this
Action: Calculator
Action Input: 12^3
Observation: Answer: 1728
Thought: I need to then raise the previous result to the second power
Action: Calculator
Action Input: 1728^2
Observation: Answer: 2985984
Thought: I now know the final answer
Final Answer: 2985984
> Finished chain.
Memory:就是提供对话的上下文存储,可以使用Langchain的ConversationChain,在LLM交互中记录交互的历史状态,并基于历史状态修正模型预测。
# ConversationChain用法
llm = OpenAI(temperature=0)
# 将verbose设置为True,以便我们可以看到提示
conversation = ConversationChain(llm=llm, verbose=True)
print("input text: conversation")
conversation.predict(input="Hi there!")
conversation.predict(
input="I'm doing well! Just having a conversation with an AI.")
通过多轮运行以后,就会出现:
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Human: I'm doing well! Just having a conversation with an AI.
AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about?
具体代码
需要配置ENV: OPENAI_API_KEY
# 导入LLM包装器
from langchain import OpenAI, ConversationChain
from langchain.agents import initialize_agent
from langchain.agents import load_tools
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# 初始化包装器,temperature越高结果越随机
llm = OpenAI(temperature=0.9)
# 进行调用
text = "What would be a good company name for a company that makes colorful socks?"
print("input text: ", text)
print(llm(text))
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
print("input text: product")
print(prompt.format(product="colorful socks"))
chain = LLMChain(llm=llm, prompt=prompt)
chain.run("colorful socks")
# 导入一些tools,比如llm-math
# llm-math是langchain里面的能做数学计算的模块
tools = load_tools(["llm-math"], llm=llm)
# 初始化tools,models 和使用的agent
agent = initialize_agent(tools,
llm,
agent="zero-shot-react-description",
verbose=True)
text = "12 raised to the 3 power and result raised to 2 power?"
print("input text: ", text)
agent.run(text)
# ConversationChain用法
llm = OpenAI(temperature=0)
# 将verbose设置为True,以便我们可以看到提示
conversation = ConversationChain(llm=llm, verbose=True)
print("input text: conversation")
conversation.predict(input="Hi there!")
conversation.predict(
input="I'm doing well! Just having a conversation with an AI.")
Agent的原理
基于用户输入动态地调用chains,LangChani可以将问题拆分为几个步骤,然后每个步骤可以根据提供个Agents做相关的事情。
工具代码
from langchain.tools import BaseTool
# 搜索工具
class SearchTool(BaseTool):
name = "Search"
description = "如果我想知道天气,'鸡你太美'这两个问题时,请使用它"
return_direct = True # 直接返回结果
def _run(self, query: str) -> str:
print("\nSearchTool query: " + query)
return "这个是一个通用的返回"
async def _arun(self, query: str) -> str:
raise NotImplementedError("暂时不支持异步")
# 计算工具
class CalculatorTool(BaseTool):
name = "Calculator"
description = "如果是关于数学计算的问题,请使用它"
def _run(self, query: str) -> str:
print("\nCalculatorTool query: " + query)
return "3"
async def _arun(self, query: str) -> str:
raise NotImplementedError("暂时不支持异步")
以上代码提供了两个基于langchain的BaseTool工具:
- SearchTool逻辑是实现搜索功能
- description=”如果我想知道或者查询’天气’,’鸡你太美’知识时,请使用它”,意思是查询类似的问题会走到SearchTool._run方法,无论什么这里我都返回”这个是一个通用的返回”
- return_direct=True,表示只要执行完SearchTool就不会进步一步思考,直接返回
- CalculatorTool逻辑是实现计算功能
- description = “如果是关于数学计算的问题,请使用它”,意思是计算类的问题会走到CalculatorTool._run方法,无论什么这里我都返回100
- return_direct是默认值(False),表示执行完CalculatorTool,OpenAI会继续思考问题
执行逻辑
1、先问一个问题
llm = OpenAI(temperature=0)
tools = [SearchTool(), CalculatorTool()]
agent = initialize_agent(
tools, llm, agent="zero-shot-react-description", verbose=True)
print("问题:")
print("答案:" + agent.run("告诉我'鸡你太美'是什么意思"))
2、执行结果
问题:
> Entering new AgentExecutor chain...
I should try to find an answer online
Action: Search
Action Input: '鸡你太美'
SearchTool query: '鸡你太美'
Observation: 这个是一个通用的返回
> Finished chain.
答案:这个是一个通用的返回
3、如何实现的呢?
LangChain Agent中,内部是一套问题模板:
PREFIX = """Answer the following questions as best you can. You have access to the following tools:"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!
Question: {input}
Thought:{agent_scratchpad}"""
通过这个模板,加上我们的问题以及自定义的工具,会变成下面这个样子(# 后面是增加的注释):
# 尽可能的去回答以下问题,你可以使用以下的工具:
Answer the following questions as best you can. You have access to the following tools:
Calculator: 如果是关于数学计算的问题,请使用它
Search: 如果我想知道天气,'鸡你太美'这两个问题时,请使用它
Use the following format: # 请使用以下格式(回答)
# 你必须回答输入的问题
Question: the input question you must answer
# 你应该一直保持思考,思考要怎么解决问题
Thought: you should always think about what to do
# 你应该采取[计算器,搜索]之一
Action: the action to take, should be one of [Calculator, Search]
Action Input: the input to the action # 动作的输入
Observation: the result of the action # 动作的结果
# 思考-行动-输入-输出 的循环可以重复N次
... (this Thought/Action/Action Input/Observation can repeat N times)
# 最后,你应该知道最终结果
Thought: I now know the final answer
# 针对于原始问题,输出最终结果
Final Answer: the final answer to the original input question
Begin! # 开始
Question: 告诉我'鸡你太美'是什么意思 # 问输入的问题
Thought:
通过这个模板向openai规定了一系列的规范,包括目前现有哪些工具集,你需要思考回答什么问题,你需要用到哪些工具,你对工具需要输入什么内容等。
如果仅仅是这样,openai会完全补完你的回答,中间无法插入任何内容。
因此LangChain使用OpenAI的stop参数,截断了AI当前对话。”stop”: [”\nObservation: “, “\n\tObservation: “]。
做了以上设定以后,OpenAI仅仅会给到Action和 Action Input两个内容就被stop停止。
最后根据LangChain的参数设定就能实现得到返回值『这个是一个通用的返回』,如果return_direct设置为False,openai将会继续执行,直到找到正确答案(具体可以看下面这个『计算的例子』)。
4、计算的例子
llm = OpenAI(temperature=0)
tools = [SearchTool(), CalculatorTool()]
agent = initialize_agent(
tools, llm, agent="zero-shot-react-description", verbose=True)
print("问题:")
print("答案:" + agent.run("告诉我10的3次方是多少?"))
执行结果:
问题:
> Entering new AgentExecutor chain...
这是一个数学计算问题,我应该使用计算器来解决它。
Action: Calculator
Action Input: 10^3
CalculatorTool query: 10^3
Observation: 5
Thought: 我现在知道最终答案了
Final Answer: 10的3次方是1000
> Finished chain.
答案:10的3次方是1000
发现经过CalculatorTool执行后,拿到的Observation: 5,但是openai认为答案是错误的,于是返回最终代码『10的3次方是1000』。
完整样例
from langchain.agents import initialize_agent
from langchain.llms import OpenAI
from langchain.tools import BaseTool
# 搜索工具
class SearchTool(BaseTool):
name = "Search"
description = "如果我想知道天气,'鸡你太美'这两个问题时,请使用它"
return_direct = True # 直接返回结果
def _run(self, query: str) -> str:
print("\nSearchTool query: " + query)
return "这个是一个通用的返回"
async def _arun(self, query: str) -> str:
raise NotImplementedError("暂时不支持异步")
# 计算工具
class CalculatorTool(BaseTool):
name = "Calculator"
description = "如果是关于数学计算的问题,请使用它"
def _run(self, query: str) -> str:
print("\nCalculatorTool query: " + query)
return "5"
async def _arun(self, query: str) -> str:
raise NotImplementedError("暂时不支持异步")
llm = OpenAI(temperature=0.5)
tools = [SearchTool(), CalculatorTool()]
agent = initialize_agent(
tools, llm, agent="zero-shot-react-description", verbose=True)
print("问题1:")
print("答案:" + agent.run("查询这周天气"))
print("问题2:")
print("答案:" + agent.run("告诉我'鸡你太美'是什么意思"))
print("问题3:")
print("答案:" + agent.run("告诉我'hello world'是什么意思"))
print("问题4:")
print("答案:" + agent.run("告诉我10的3次方是多少?"))
执行结果
问题1:
> Entering new chain...
我需要查询天气信息
Action: Search
Action Input: 这周天气
SearchTool query: 这周天气
Observation: 这个是一个通用的返回
> Finished chain.
答案:这个是一个通用的返回
问题2:
> Entering new chain...
This is not a mathematical question, so I should use a search engine.
Action: Search
Action Input: '鸡你太美'
SearchTool query: '鸡你太美'
Observation: 这个是一个通用的返回
> Finished chain.
答案:这个是一个通用的返回
问题3:
> Entering new chain...
'hello world' is usually a phrase used to introduce someone to programming
Action: Search
Action Input: 'hello world' 意思
SearchTool query: 'hello world' 意思
Observation: 这个是一个通用的返回
> Finished chain.
答案:这个是一个通用的返回
问题4:
> Entering new chain...
I need to use a calculator to solve this math question.
Action: Calculator
Action Input: 10^3
CalculatorTool query: 10^3
Observation: 5
Thought: I now know the final answer
Final Answer: 10的3次方是1000
> Finished chain.
答案:10的3次方是1000
tools
- Example selectors:如果您有大量示例,您可能需要选择要包含在提示中的示例。示例选择器是负责执行此操作的类。更接近的示例,gpt给的结果也就更准确。
- Pydantic (JSON) parser:该输出解析器允许用户指定任意 JSON 模式并查询 LLM 以获得符合该模式的 JSON 输出。结构化结果,方便与其他程序交互。
- Document loaders:用于加载各种文档,如csv/json/pdf/txt等
- Text splitters:gpt有tokens限制,所以交给gpt的内容不能太长。如果有大文件,则需要分块处理。
- Text embedding models:embedding创建一段文本的矢量表示。它意味着我们可以在向量空间中思考文本,并执行语义搜索之类的操作,在向量空间中查找最相似的文本片段。
- Vector stores:存储和搜索非结构化数据的最常见方法之一是embedding它并存储生成的embedding向量,然后在查询时embedding非结构化查询并检索与embedding查询“最相似”的向量。
- Agent:使用 LLM 来确定采取哪些行动以及采取什么顺序。操作可以是使用工具并观察其输出,也可以是向用户返回响应。
- PlanAndExecute:计划和执行代理通过首先计划要做什么,然后执行子任务来实现目标。如AutoGPT的功能